

InterviewSolution
1. |
Find x, y, a and b if \(\begin{bmatrix}3x+4y & 2 & x-2y \\[0.3em]a+b & 2a-b & -1 \\[0.3em]\end{bmatrix}\)= \(\begin{bmatrix}2 & 2 & 4 \\[0.3em]5 &-5 & -1 \\[0.3em]\end{bmatrix}\) |
Answer» Given two matrices are equal, \(\begin{bmatrix}3x+4y & 2 & x-2y \\[0.3em]a+b & 2a-b & -1 \\[0.3em]\end{bmatrix}\)= \(\begin{bmatrix}2 & 2 & 4 \\[0.3em]5 &-5 & -1 \\[0.3em]\end{bmatrix}\) We know that if two matrices are equal then the elements of each matrices are also equal. ∴ 3x + 4y = 2 …… (1) and x – 2y = 4 …… (2) and a + b = 5 ……(3) 2a – b = – 5 ……(4) Multiplying equation (2) by 2 and adding to equation (1). 3x + 4y + 2x – 4y = 2 + 8 ⇒ 5x = 10 ⇒ x = 2 Now, Putting the value of x in equation (1) 3 × 2 + 4y = 2 ⇒ 6 + 4y = 2 ⇒ 4y = 2 – 6 ⇒ 4y = – 4 ⇒ y = – 1 Adding equation (3) and (4), a + b + 2a – b = 5 + (–5) ⇒ 3a = 5 – 5 = 0 ⇒ a = 0 Now, Putting the value of a in equation (3) 0 + b = 5 ⇒ b = 5 ∴ a = 0, b = 5, x = 2 and y = – 1 |
|