InterviewSolution
Saved Bookmarks
| 1. |
Find x, y and z so that A = B, where \(A=\begin{bmatrix}x-2 & 3 & 2z \\[0.3em]18z & y+2 &6z \\[0.3em]\end{bmatrix},\)\(B=\begin{bmatrix}y & z & 6 \\[0.3em]6y & z &2y \\[0.3em]\end{bmatrix}\) |
|
Answer» Given two matrices are equal as A = B. \(\begin{bmatrix} x-2 & 3 & 2z \\[0.3em] 18z & y+2 &6z \\[0.3em] \end{bmatrix} \)\(=\begin{bmatrix} y & z & 6 \\[0.3em] 6y & z &2y \\[0.3em] \end{bmatrix} \) We know that if two matrices are equal then the elements of each matrices are also equal. ∴x – 2 = y …(1) z = 3 And y + 2 = z … (2) 2y = 6z ⇒ y = 3z …(3) Putting the value of z in equation (3), ∴ y = 3z = 3 × 3 = 9 Putting the value of y in equation (1), x – 2 = 9 ⇒ x – 2 = 9 ⇒ x = 9 + 2 ⇒ x = 11 ∴ x = 11, y = 9, z = 3. |
|