1.

Find zeroesof polynomialx²+ 7 x+ 12and verify the relationship betweenZeros andCoefficient​

Answer»

\bf \huge \hookrightarrow \: \: Given:

\Large \mapsto \: {\textrm{{{\color{navy}{x² \: + <klux>7X</klux> \: +  \: <klux>12</klux>}}}}}

Now , we find ZEROS of this polynomial.

\bf \Large \rightarrow \: \:  {x}^{2} \:  + 7x \:  + 12 \\  \\  \bf \Large \rightarrow \: \:  {x}^{2} \:   +  \: 4x \:  + 3x \:  + 12 \\  \\ \bf \Large \rightarrow  \: \:x \: (x \:  +  \: 4) +  \:3 \: (x + 4) \\  \\ \bf \Large \rightarrow \:(x + 3) \:  \:  \: (x + 4) \\  \\

\bf \Large \implies \: \: x \:  +  \: 3 \:  =  \: 0 \\  \\  \bf \Large \implies \:  \: x \:  =   \:  \: - 3 \\  \\  \\ \bf \Large \implies \:  \: x \:  +  \: 4 \:  = 0 \\  \\ \bf \Large \implies \: x \:  =  \:  \:  - 4

\bf \Large \hookrightarrow \: \: Then,  \\  \\  \bf \Large \rightarrow \: \:  \alpha  \:  = \:  \:   - 3  \\  \\ \bf \Large \rightarrow \: \: \beta   \:  =  \:  \:  - 4

{\textrm{{{\color{navy}{<klux>GENERAL</klux> equation is ax² + bx + c}}}}}

Now , we compare + 7x + 12 to the general equation.

\bf \large \therefore \: \: a \: \:   =  \: 1 \\  \\  \bf \large \therefore \: \: \: b \:  \:  =  \: 7 \\  \\ \bf \large \therefore \: \:c \:  \:  =  \: 12

_______________________

Now , we find the RELATIONSHIP between Zeros and Coefficient.

\Large  \mid   \underline {\bf  {{{\color{orange}{First  \:  \: Relation}}}}} \mid

\bf \Large \mapsto \:\:  \: Sum \:  \: of \: zeroes \\  \\ \bf \Large \mapsto \:\:  \: \: ( \:  \alpha  \:  +  \:  \beta  \: ) =  \frac{ - b}{a}

\bf \large \mapsto \:\:  \: \: ( \:   - 3  \:  +  \:   - 4  \: ) =  \frac{  -  \: 7}{1}  \\   \\ \bf \large \mapsto \:\:  \: \: \:  - 7 \:  =  \:  - 7

\large {\textrm{{{\color{red}{First  \: Relation  \: is  \: proved}}}}}

\Large  \mid   \underline {\bf  {{{\color{orange}{Second  \:  \: Relation}}}}} \mid

\bf \large \mapsto \:\:  \:Product  \:  \: of \:  \:  Zeros \\  \\ \bf \Large \mapsto \:\:  \: \: ( \:  \alpha  \:   \times   \:  \beta  \: ) \:  =  \:  \frac{ c}{a}

\bf \Large \mapsto \:\:  \: \: ( \:   - 3  \:  +  \:   - 4  \: ) =  \frac{ 12}{1}  \\  \\ \bf \Large \mapsto \:\: \: 12 \:  =  \: 12

\large{\textrm{{{\color{red}{Second  \: Relation \:  is  \: proved}}}}}



Discussion

No Comment Found

Related InterviewSolutions