1.

Findthe equation of a curve passing through the origin given that the slope ofthe tangent to the curve at any point (x, y) is equal to the sum of thecoordinates of the point.

Answer» Let the moving point be `(x,y)`
Given that, `(dy)/(dx)=x+yimplies (dy)/(dx)-y=x`
Here, `P=-1`, `Q=x`
`:. I.F.=e^(int-1dx)=e^(-x)`
and general solution : `y(e^(-x))=intxe^(-x)dx+c`
`implies ye^(-x)=-xe^(-x)-int1(-e^(-x))dx+c`
`=-xe^(-x)-e^(-x)+c`
`implies y=-x-1+ce^(x)`
This curve passes through `(0,0)`
`:. 0=0-1+cimpliesc=1`
`:.`Curve is `y=-x-1+e^(x)`
`implies x+y+1=e^(x)`


Discussion

No Comment Found

Related InterviewSolutions