 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Findthe particular solution of the differential equation `log(dy)/(dx)=3x+4y`given that `y" "=" "0`when`x" "=" "0`. | 
| Answer» Correct Answer - `4e^(3x)+3e^(-4y)=7` `(dy)/(dx)=e^(3x+4y)=e^(3x)*e^(4y) rArr int e^(3x)dx = int e^(-4y)dy` `therefore (e^(3x))/(3)=(e^(-4y))/(-4)+C. " " `...(i) Putting x = 0 and y = 0 in (i), we get `C=((1)/(3)+(1)/(4))=(7)/(12).` `therefore (e^(3x))/(3)=(e^(-4y))/(-4)+(7)/(12) rArr 4e^(3x)+3e^(-4y)=7.` | |