1.

Findthe value of (i) sin 18^(@) " " (ii) cos 18^(@) (iii) cos 36^(@)" " (iv) sin36^(@)(v) sin 72^(@)" " (vi) cos 72^(@) (vii) sin54^(@)" " (viii) cos54^(@)

Answer»

Solution :(i) Let `theta =18^(@) ` Then
`theta =18^(@)rArr 5theta =90^(@)`
`rArr2theta =(90^(@) -3theta)`
`rArr sin 2theta = sin (90^(@) -3theta) =cos 3 theta`
`rArr2sinthetacos theta= 4 cos^(3) theta -3cos theta`
`hArr 2 sin thetacos theta- 4 cos^(3) theta+ 3cos theta=0`
`hArrcos theta (2 sin theta -4cos^(2) theta+ 3) =0`
`hArr 2 sintheta- 4 cos^(2) theta+ 3=0[ :'cos theta= cos18^(@)ne 0]`
`HARR2 sintheta- 4 (1 - sin^(2) theta) + 3 =0`
`hArrsin theta= (-2 +- sqrt(4+6))/(8) =((-1 +-sqrt(5))/(4)`
`hArr sin theta =((sqrt(5)-1)/(4))`
`:.sin 18^(@)= ((sqrt(5)-1)/(4))`
(ii) `cos^(2)18^(@) = (1- sin^(2)18^(@))`
`={1-((sqrt(5)-1)^(2))/(16)} ={1-((6 -2sqrt(5))/(16)} =(10 +2sqrt(5))/(16)`
`hArrcos 18^(@)=(sqrt(10 + 2sqrt(5)))/(4 )[ :'cos 18^(@) gt 0]`
(iii)cos `36^(@)= (1-2 sin^(2)18^(@))`
` ={1-2 ((sqrt(5)-1)^(2)/(16)}={1-((6-2sqrt(5)))/(8)}`
`=(sqrt(5)+1)/(4)`
(iv) sin `36^(@)=sqrt(1- cos^(2) 36^(@))= {1 -((sqrt(5)+1)^(2))/(16)}^(1/2)`
`={(10-2sqrt(5))/(16)}^(1/2) =(sqrt(10-2sqrt(5))/(4)`
`(v)sin 72^(@)= sin (90^(@) -18^(@)) = cos 18^(@)= (sqrt(10+2sqrt(5)))/(4)`
(vi)cos `72^(@)= cos (90^(@) -18^(@)) = sin 18^(@) = ((sqrt(5)-1))/(4)`
`(vii) sin 54^(@) = sin (90^(@) -36^(@))= cos36^(@)=((sqrt(5)+1))/(4)`
(VIII) ` cos 54^(@)= cos(90^(@)-36^(@))= sin36^(@) = (sqrt(10 -2sqrt(5)))/(4)`


Discussion

No Comment Found