InterviewSolution
Saved Bookmarks
| 1. |
For `0 |
|
Answer» Correct Answer - C We have `cos y=sqrt(3)/2` `rArr y=pi/6` Let `cot (x-y)=t` `:. t^(2)-t-sqrt(3) t+sqrt(3)=0` `rArr (t-1) (t-sqrt(3))=0` `:. cot (x-y)=1 or cot (x-y)=sqrt(3)` Given that `x in (0, pi)` If `x-y=pi/6` then `x=pi/6+pi/6=pi/3 rArr (x, y) =(pi/3, pi/6)` If `x-y=pi/4` then `x=pi/6+pi/4=(5pi)/12 rArr (x, y) = ((5pi)/12, pi/6)` Possible ordered pairs (x, y) are `(pi/3, pi/6), ((5pi)/12, pi/6)`. |
|