

InterviewSolution
Saved Bookmarks
1. |
For a frequency distribution standard deviation is computed by applying the formulaA. \(\sigma = \sqrt{\Big(\frac{\Sigma fd^2}{\Sigma f}- \Big(\frac{\Sigma fd}{\Sigma f}\Big)^2}\Big)\) B. \(\sigma = \sqrt{\Big(\frac{\Sigma fd}{\Sigma f}\Big)^2-\frac{\Sigma fd^2}{\Sigma f}}\)C. \(\sigma = \sqrt{\frac{\Sigma fd^2}{\Sigma f}-\frac{\Sigma fd}{\Sigma f}}\) D. \(\sigma = \sqrt{\Big(\frac{\Sigma fd}{\Sigma f}\Big)^2-\frac{\Sigma fd^2}{\Sigma f}}\) |
Answer» We know, M.D = \(\frac{\Sigma fd}{\Sigma f}\) Variance = \(\Big(\frac{\Sigma fd^2}{\Sigma f}-\Big(\frac{\Sigma fd}{\Sigma f}\Big)^2\Big)\) SD \(\sigma = \sqrt{Variance}\) Hence, \(\sigma = \sqrt{\Big(\frac{\Sigma fd^2}{\Sigma f}- \Big(\frac{\Sigma fd}{\Sigma f}\Big)^2}\Big)\) |
|