1.

For a frequency distribution standard deviation is computed by applying the formulaA. \(\sigma = \sqrt{\Big(\frac{\Sigma fd^2}{\Sigma f}- \Big(\frac{\Sigma fd}{\Sigma f}\Big)^2}\Big)\)   B. \(\sigma = \sqrt{\Big(\frac{\Sigma fd}{\Sigma f}\Big)^2-\frac{\Sigma fd^2}{\Sigma f}}\)C.  \(\sigma = \sqrt{\frac{\Sigma fd^2}{\Sigma f}-\frac{\Sigma fd}{\Sigma f}}\) D. \(\sigma = \sqrt{\Big(\frac{\Sigma fd}{\Sigma f}\Big)^2-\frac{\Sigma fd^2}{\Sigma f}}\) 

Answer»

We know, 

M.D = \(\frac{\Sigma fd}{\Sigma f}\) 

Variance = \(\Big(\frac{\Sigma fd^2}{\Sigma f}-\Big(\frac{\Sigma fd}{\Sigma f}\Big)^2\Big)\) 

SD \(\sigma = \sqrt{Variance}\)  

Hence,   \(\sigma = \sqrt{\Big(\frac{\Sigma fd^2}{\Sigma f}- \Big(\frac{\Sigma fd}{\Sigma f}\Big)^2}\Big)\) 



Discussion

No Comment Found

Related InterviewSolutions