

InterviewSolution
Saved Bookmarks
1. |
For a loaded die, the probabilities of outcomes are given as under:`P(1)=P(2)=2/(10),P(3)=P(5)=P(6)=1/(10)a n dP(4)=3/(10)`The die is thrown two times. Let A and B be the events as defined belowA=Getting same number each time, B=Getting a total score of 10 or more.Determine whether or notA and B are independent events. |
Answer» for a loaded die, it is given that P(1)=P(2)=0.2, P(3)=P(5)=P(6)=0.1 and P(4)=0.3 Also, die is thrown two times. Here, A = same number each time and B= Total sore is 10 or more `therefore` A={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} So, P(A)=[P(1,1)+P(2,2)+P(3,3)+P(4,4)+P(5,5)+P(6,6)] `=[P(1)cdotP(1)+P(2)cdotP(2)+P(3)cdotP(3)+P(4)cdotP(4)+P(5)cdotP(5)+P(6)cdotP(6)]` `=[0.2xx0.2+0.2xx0.2+0.1xx0.1+0.3xx0.3+0.1xx0.1+0.1xx0.1]` =0.04+0.04+0.01+0.09+0.01+0.01=0.20 and B={(4,6),(6,4),(5,5),(5,6),(6,5),(6,6)} `thereforeP(B)=P(4,6)+P(6,4)+P(5,5)+P(5,6)+P(6,5)+P(6,6)` `=P(4)cdotP(6)+P(6)cdotP(4)+P(5)cdotP(5)+P(5)cdotP(6)+P(6)cdotP(5)+P(6)cdotP(6)` `=0.3xx0.1+0.1xx0.2+0.1xx0.1+0.1xx0.1+0.1xx0.1+0.1xx0.1` `=0.03+0.03+0.01+0.01+0.01+0.01=0.10` Also,`AcapB={(5,5),(6,6)}` `thereforeP(AcapB)=P(5,5)+P(6,6)=P(5)cdotP(5)+P(6)cdotP(6)` `=0.1xx0.1+0.1xx0.1=0.01+0.001=0.02` We know tht, for two events A and B, if `P(AcapB)=P(A)cdotP(B)`, then both are independent events. Here, `P(AcapB)=0.02 and P(A)cdotP(B)=0.02` Hence, A and B are independent events. |
|