InterviewSolution
Saved Bookmarks
| 1. |
For an ideal gas the molar heat capacity varies as `C=C_V+3aT^2`. Find the equation of the process in the variables (T,V) where a is a constant. |
|
Answer» Correct Answer - A::B::C `dQ=dU+dW` `CdT=C_VdT+pdV` `(C_V+3aT^2)dT=C_VdT+pdV` `:.` `3aT^2dT=pdV=((RT)/(V))dV` `:.` `((3a)/(R))TdT=(dV)/(V)` Integrating, we get `((3aT^2)/(2R))=InV-InC` `V=Ce^((3aT^2)/(2R))` or `Ve^(-(3aT^2)/(2R))`=const ant` |
|