Saved Bookmarks
| 1. |
For any complex number z if |z+1| = |z-1| then show that Re(z) = 0 do it fast please |
Answer» Answer:Re(z)=0Given:Z is a COMPLEX number.And the equation is ,|z-1|=|z+1|Solution:As we know that,z = x + iyz=x+iySubstitute z in the equation,|x + iy - 1| = |x + iy + 1|∣x+iy−1∣=∣x+iy+1∣(x + iy - 1) = ± (x + iy + 1)(x+iy−1)=±(x+iy+1)(Here,'+' doesn't satisfy the equation.)(x + iy - 1) = - (x + iy + 1)(x+iy−1)=−(x+iy+1)x + iy - 1 = - x - iy + 1x+iy−1=−x−iy+12x + 2iy = 02x+2iy=0x + iy = 0x+iy=0So,Re(z)=0And ALSO, IMAGINARY PART of z=0. |
|