1.

For any positive integer n, if `4^(n)-3n` is divided by 9, then what is the remainder ?A. 8B. 6C. 4D. 1

Answer» Correct Answer - D
Using binomial theorem. `4^(n)-3n=(1+3)^(n)-3n`
`=1+n.3+(n(n-1))/(2!)3^(2)+…-3`
`=1+(n(n+1))/(2!).3^(2)+(n(n-1)(n-2))/(3!).3^(3)+....`
`rArr" "4^(n)-3n=9{(n(n-1))/(2!)+....}+1`
Thus, when `4^(n)-3n` is divided by 9, the remainder is 1.


Discussion

No Comment Found