1.

For each real `x, -1 lt x lt 1`. Let A(x) be the matrix `(1-x)^(-1) [(1,-x),(-x,1)]` and `z=(x+y)/(1+xy)`. ThenA. `A(z)=A(x) A(y)`B. `A(z)=A(x)-A(y)`C. `A(z)=A(x)+A(y)`D. `A(z)=A(x) [A(y)]^(-1)`

Answer» Correct Answer - A
`A(x)A(y)=(1-x)^(-1) (1-y)^(-1)[(1,-x),(-x,1)][(1,-y),(-y,1)]`
`=(1+xy-(x+y))^(-1) [(,),(,)]`
`=(1- (x+y)/(1+xy))^(-1) [(1+xy,-(x+y)),(-(x+y),1+xy)]=A(z)`


Discussion

No Comment Found

Related InterviewSolutions