Saved Bookmarks
| 1. |
For each real `x, -1 lt x lt 1`. Let A(x) be the matrix `(1-x)^(-1) [(1,-x),(-x,1)]` and `z=(x+y)/(1+xy)`. ThenA. `A(z)=A(x) A(y)`B. `A(z)=A(x)-A(y)`C. `A(z)=A(x)+A(y)`D. `A(z)=A(x) [A(y)]^(-1)` |
|
Answer» Correct Answer - A `A(x)A(y)=(1-x)^(-1) (1-y)^(-1)[(1,-x),(-x,1)][(1,-y),(-y,1)]` `=(1+xy-(x+y))^(-1) [(,),(,)]` `=(1- (x+y)/(1+xy))^(-1) [(1+xy,-(x+y)),(-(x+y),1+xy)]=A(z)` |
|