Saved Bookmarks
| 1. |
For his 18th birthday in February Peter plants to turn a hut in the garden of his parents into a swimming pool with an artifical beach. In order to estimate the consts for heating the water and the house , peter obtains the data for the natural gas combustion and its price. What is the total energy (in MJ) needed for Peter's"winter swimming pool" calculated in 1.3 and 1.4? How much natural gas will he need, if the gas heater has an efficiency of 90.0% ? What are the different costs for the use of either natural gas or electricity ? Use the values given by PUC for your calculations and assume 100% efficiency forthe electric heater. Table 1: Composition of natural gas {:("Chemical substance","mol fraction x",D_(1)H^(@)(KJ mol^(-1))^(-1),S^(@)(J mol^(-1)K^(-1))^(-1),C_(p)^(@)(J mol^(-1)K^(-1))^(-1)),(CO_(2(g)),0.0024,-393.5,213.6,37.1),(N_(2(g)) ,0.0134,0.0,191.6,29.1),(CH_(2(g)),0.9732,-74.6,186.3,35.7),(C_(2)H_(3 (g)),0.0110,-84.0,229.2,52.2),(H_(2)O_(g),-,-285.8,70.0,75.3),(H_(2)O_(g),-,-241.8,188.8,33.6),(H_(2)O_(g),-,0.0,205.2,29.4):} Equation J=E(A.Deltat)^(-1) =!! lambda "wall" . DeltaT. d^(-1), where J= energy flow E along a temperature gradient (wall direction Z) par area A and time Deltat, d-wall thickness , lambdawall -heat conductivity , DeltaT - difference in temperature between the inside and the outside of the house. |
|
Answer» |
|