1.

For how many values of m the equation x^2- 2x (1 + 3m) + 7 (3 + 2m) = 0 will have equal roots?

Answer»

Answer:

\sf{Values \ of \ m \ are \ \dfrac{4+9\sqrt3}{9}}

\sf{or \ \dfrac{4-9\sqrt3}{9}.}

Given:

  • The given quadratic EQUATION is x²-2(1+3m)x+7(3+2m)=0

To find:

  • The value of m if equation has EQUAL roots.

Solution:

\sf{The \ given \ quadratic \ equation \ is}

\sf{\longmapsto{x^{2}-2(1+3m)x+7(3+2m)=0}}

\sf{Here, \ a=1, \ b=-2(1+3m) \ and \ c=7(3+2m)}

\sf{Roots \ are \ equal.}

\sf{Hence,}

\sf{b^{2}-4ac=0}

\sf{\therefore{[2(1+3m)]^{2}-4\times(1)[7(4+2m)]=0}}

\sf{\therefore{(2+6m)^{2}-4(28+14m)=0}}

\sf{\therefore{4+24m+36m^{2}-112-56m=0}}

\sf{\therefore{36m^{2}-32m-108=0}}

\sf{\therefore{4(9m^{2}-8m-27)=0}}

\sf{\therefore{9m^{2}-8m-27=\dfrac{0}{4}}}

\sf{\therefore{9m^{2}-8m-27=0}}

\sf{Here, \ a=9, \ b=-8 \ and \ c=-27}

\sf{By \ quadratic \ formula}

\sf{m=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}

\sf{\therefore{m=\dfrac{8\pm18\sqrt3}{2(9)}}}

\sf{\therefore{m=\dfrac{4\pm9\sqrt3}{9}}}

\sf\purple{\tt{\therefore{Values \ of \ m \ are \ \dfrac{4+9\sqrt3}{9}}}}

\sf\purple{\tt{or \ \dfrac{4-9\sqrt3}{9}.}}



Discussion

No Comment Found

Related InterviewSolutions