InterviewSolution
Saved Bookmarks
| 1. |
For polytropic process `PV^(n)` = constant, molar heat capacity `(C_(m))` of an ideal gas is given by:A. `C_(v,m)+(R)/((n-1))`B. `C_(v,m)+(R)/((1-n))`C. `C_(v,m)+R`D. `C_(p,m)+(R)/((n-1))` |
|
Answer» Correct Answer - B `dU=dq+dw` `nC_(v,m).dT=nC_(m).dT-P.dV` `C_(m)=C_(v,m)+(P.dV)/(n.dT)` ….(1) `PV^(n)=K and PV=nRT` `therefore" "KV^(1-n)=nRT` `K(1-n)V^(-n).dV=nRdT` `(dV)/(dT)=(nR)/(K(1-n)V^(-n))` …(2) from Eqs. (1) and (2) `C_(m)=C_(v,m)+(R)/(1-n)` |
|