InterviewSolution
Saved Bookmarks
| 1. |
For relation `2 log y - log x - log ( y-1)`=0A. domain `=(4,+oo),"range"=(1+oo)`B. domain`=(4,oo),"range"=(2+oo)`C. domain`=(2,oo),"range"=(2,+oo)`D. none of these |
|
Answer» Correct Answer - A Here , `log.(y^(2))/(x(y-1))=0` `or" "(y^(2))/(x(y-1))=1` `"or "y^(2)=xy-x` `"or "y^(2)-xy+x=0` `therefore" "y=(xpnsqrt(x^(2)-4x))/(2)` So y is real if `x^(2)-4xge0` `"or "x(x-4)ge0` `therefore" "xle0orxge4.` But `xgt0` for log x to be defined. `"So, "xge4` `"Now, "x=(y^(2))/(y-1)ge4` `"or "(y^(2)-4y+4)/(y-1)ge0` `"or "(y-2)^(2)//(y-1)ge0` `rArr" "yge1` But `ygt1` for log `(y-1)` to be real. |
|