Saved Bookmarks
| 1. |
For the cell Mg_((s))abs(Mg^(2+)""_((aq)))abs(Ag^(+)""_((aq)))Ag_((s)), calculate the equilibrium constant at 25^(@)C and maximum work that can be obtained during operation of cell. Given : E_(Mg^(2+)|Mg)^(@)=-237V " and " E_(Ag^(2+)|Ag)^(@)=0.80V |
|
Answer» Solution :oxidation at anode `MG rarr mg^(2+)+2e^(-)"...(1)"` `""(E_("ox")^(@))=2.37V` Reduction at cathode `Ag^(+)+e^(-) rarr Ag "...(2)"` `""(E_("red")^(2))=0.80V` `therefore E_("CELL")^(@)=(E_("ox")^(@))_("anode")+(E_("red")^(@))_("cathode")` `""=2.37+0.80` `""=3.17V` Overall REACTION Equation (1) + `2 times " equation (2)" rArr` `Mg+2Ag^(2+) rarr Mg^(2+)+2Ag` `""DELTAG^(@)=-nfE^(@)` `""=-2 times 96500 times 3.17` `""=611.810J` `DeltaG^(@)=-6.12 times 10^(5)J` `W=6.12 times 10^(5)J` `DeltaG^(@)=-2.803" RT log " K_(c)` `rArr logK_(c)=(6.12 times 10^(5))/(2.803 times 8.314 times 298)` `""K_(c)=` Antilog of (107.2). |
|