1.

For the cell Mg(s) |Mg^(2+)(aq)||Ag^(+)(aq)|Ag (s), calculate the equilibrium constant at 25^@C and maximum work that can be obtained during operation of cell. Given : E_(Mg^(2+)|Mg)^@ = + 2.37 V and E_(Ag^(2+)|Ag)^@ = 0.80V

Answer»

Solution :`{:("Oxidation at anode", Mg to Mg^(2+)+2e^(-), (E_("ox")^(@)) = 2.37V),("Reduction at cathode ", Ag^+ + e^(-) to Ag, (E_("red")^@) = 0.80 V):}`
`:. E_("cell")^(@) = (E_("ox")^(@))_("anode") + (E_("red")^(@))_("cathode") = 2.37 + 0.80 = 3.17V`
Overall reaction,
`Mg + 2Ag^(+) to Mg^(2+) +2Ag`
`DeltaG^@ = -NFE^@`
`= -2 XX 96400 xx 3.17`
`= -6.118 xx 10^5J`
We know that `W_("MAX") = DeltaG^@`
`:. W_("max") = +6.118 xx 10^5 J`
Relationship between `DeltaG^@` and `K_(eq)` is
`Delta G = -2.303 RT log K_(eq)`
`DeltaG = -2.303 xx 8.314 xx 298 log K_(eq) "" [ :. 25^@C = 298 K]`
`log K_(eq) = (6.118 xx 10^5)/(2.303 xx 8.314 xx 298) IMPLIES (6.118 xx 10^5)/(5705.84)`
`log K_(eq) = 107.223`
`K_(eq) = "Antilog" (107.223)` .


Discussion

No Comment Found