InterviewSolution
Saved Bookmarks
| 1. |
For the curve `x = t^2 - 1, y = t^2 - t,` the tangent line is perpendicular to `x`-axis, then `t =`(i)`0`(ii)`infty`(iii) `1/(sqrt3)`(iv) `-1/(sqrt3)`A. `t=0`B. `t=oo`C. `t=1//sqrt(3)`D. `t=-1//sqrt(3)` |
|
Answer» Correct Answer - A we have, `x=t^(2)-1, y=t^(2)-t` `therefore (dy)/(dx)=((dy)/(dt))/((dx)/(dt))=(2t-1)/(2t)` If the tangent is perpendicular to x-axis, then `(dx)/(dy)=0 rArr (2t)/(2t-1)=0rArr t=0` |
|