InterviewSolution
Saved Bookmarks
| 1. |
The curves `ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1` intersect orthogonally, thenA. `(1)/(a)+(1)/(A)=(1)/(b) + (1)/(B)`B. `(1)/(a)-(1)/(A)=(1)/(b) - (1)/(B)`C. `(1)/(a)+(1)/(b)=(1)/(B) - (1)/(A)`D. `(1)/(a)+(1)/(b)=(1)/(A) + (1)/(B)` |
|
Answer» Correct Answer - B In illustration 4, we have seen that the curves `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1` intersect orthogonally , if `a^(2) -b^(2)=c^(2)-d^(2).` So, given curve will intersect orthogonally, if `(1)/(a)-(1)/(b)=(1)/(A) - (1)/(B)`. |
|