InterviewSolution
Saved Bookmarks
| 1. |
For the matrix `A=[[3 ,1],[ 7, 5]],`find `x` and `y`sot that `A^2+x I+y Adot=0`Hence, Find `A^(-1)dot` |
|
Answer» `A = [[3,1],[7,5]]` `A^2 = [[3,1],[7,5]][[3,1],[7,5]]` `=>A^2 = [[9+7,3+5],[21+35,7+25]] = [[16,8],[56,32]]` Now, `A^2+xI+yA = 0` `=>[[16,8],[56,32]]+x[[1,0],[0,1]]+y[[3,1],[7,5]] = 0` `=>[[16+x+3y,8+y],[56+7y,32+x+5y]] = [[0,0],[0,0]]` `=>8+y = 0 => y = -8` `=> 16+x+3y = 0 => 16+x+3(-8) = 0 => x = 8` `:. x = 8 and y = -8` Now, `A^2+8I - 8A = 0` `=>A^2-8A = -8I` `=>-1/8[A^2-8A] = I` `=>-1/8[A^2-8A]A^-1 = IA^-1` `=>-1/8[A-8I] = A^-1` `:. A^-1 = -1/8( [[3,1],[7,5]]-8[[1,0],[0,1]])` `=>A^-1 = -1/8[[-5,1],[7,-3]]` `A^-1 = [[5/8,-1/8],[-7/8,3/8]]` |
|