InterviewSolution
Saved Bookmarks
| 1. |
For the one dimensional motion, described by `x=t-sint`A. `x(t) gt 0` for all `t gt 0`B. `v(t) gt 0` for all `t gt 0`C. `a(t) gt 0` for all `t gt 0`D. `v(t)` lies between `0` and `2` |
|
Answer» Correct Answer - A::D Given, `x = t - sint` velocity `v = (dx)/(dt) = (d)/(dt) [t - sin t]` `= 1- "cost"` Acceleration `a = (dv)/(dt) = (d)/(dt) [1-"cost"] = sint` As acceleration `a gt 0` for all `t gt 0` Hence, `x(t) gt 0` for all `t gt 0` Velocity `v = 1 - cos t` when, `cos t = 1, "velocity" v = 0` `v_(max) = 1 - (cos t)_(min) = 1 - (-1) = 2` `v_(min) = 1 - (cos t)_(max) = 1 - 1 = 0` Hence, v lies between 0 and 2 Acceleration `a = (dv)/(dt) = - sint` When , `t = 0, x = 0 , x = +1 , a = 0` When, `t = (pi)/(2), x = 1, v = 0, a = - 1` When `t = pi, x = 0, x = -1, a = 1` When `t = 2pi, x = 0, x = 0, a = 0` |
|