1.

For the same objective, find the ratio of the least separation between two points to be distinguished by a microscope for light of 5000Å and electrons accelerated through 100 V used as the illuminating substance.

Answer»

Solution :Formula of linear limit of resolution of compound MICROSCOPE having oil immersion objective is :
`d_(m)=(1.22lamda)/(2nsinbeta)`
Now resolution power,
`P=(1)/(d_(m))=(2nsinbeta)/(1.22lamda)`
`:.Pprop(1)/(lamda)`
`:.(P_(1))/(p_(2))=(lamda_(2))/(lamda_(1))""......(1)`
Here, in the second case
`W=DeltaK`
`:.Ve=(1)/(2)mv^(2)=(P^(2))/(2M)""(":.P=mv)`
`:.Ve=(h^(2))/(2mlamda^(2))`
( `"":.P=(h)/(lamda)` h=Planck.s CONSTANT)
`:.lamda^(2)=(h^(2))/(2Vem)`
`:.lamda=(h)/(SQRT(2Vem))`
`:.lamda_(2)=(h)/(sqrt(2Vem))""(":.` In the second case `lamda=lamda_(2)`)
`:.lamda_(2)=(6.625xx10^(-34))/(sqrt(2xx100xx1.6xx10^(-19)xx9.1xx10^(-31)))`
`:.lamda_(2)=(6.625xx10^(-9))/(sqrt(200xx1.6xx9.1))m`
`:.lamda_(2)=(6.625xx10^(-9))/(sqrt(200xx1.6xx9.1))xx10^(10)Å`
`=(66.25)/(sqrt(200xx1.6xx9.1))` `=(66.25)/(53.96)`
`:.lamda_(2)=1.2278Å`
Now from equation (1),
`(P_(1))/(P_(2))=(1.2278)/(5000)`
`:.(P_(1))/(P_(2))=2.456xx10^(-4)`


Discussion

No Comment Found

Related InterviewSolutions