1.

For three distinct positive real numbers a, b, c (1 + a3) (1 + b3) (1 + c3) is greater than(a) abc (b) (1 + abc) (c) (1 + abc)3 (d) (1 + abc)2

Answer»

(c) (1 + abc)3

(1 + a3) (1 + b3) (1 + c3) = 1 + a3 + b3 + c3 + a3b3 + b3c3 + c3a3 + a3b3c3     …(i) 

Now for distinct positive reals, a, b, c, AM > GM

\(\frac{a^3+b^3+c^3}{3}>(a^3b^3c^3)^{\frac13}\)

⇒ a3 + b3 + c3 > 3abc                …(ii)

(∵ a, b, c > 0 ⇒ a3, b3, c3 > 0)

Also \(\frac{a^3b^3+b^3c^3+c^3a^3}{3}>(a^3b^3.b^3c^3.c^3a^3)^{\frac13}\)

⇒ a3b3 + b3c3 + c3a3 > 3a2b2c2           …(iii) 

∴ Putting the values from (ii) and (iii) on the RHS of (i), we have

(1 + a3) (1 + b3) (1 + c3) > 1 + 3abc + 3a2b2c2 + a3b3c3  = (1 + abc)3 

(1 + a3) (1 + b3) (1 + c3) > (1 + abc)3.



Discussion

No Comment Found

Related InterviewSolutions