1.

Prove that for any three positive reals numbers a, b, c, a2 + b2 + c2 ≥ ab + bc + ca.

Answer»

a2 + b2 + c2 > ab + bc + ca 

To prove a2 + b2 + c2 – ab – bc – ca >

Let S = a2 + b2 + c2 – ab – bc – ca 

Then S = \(\frac12\)(2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca) 

\(\frac12\)(a2 + b2 - 2ab + b2 + c2 - 2bc + c2 + a– 2ca) 

\(\frac12\)[(a - b)2 + (b - c)2 + (c - a)2] > 0

 As the RHS is the sum of squares which are positive ⇒ S > 0. Also the equality, i.e. = 0 holds when a = b = c.



Discussion

No Comment Found

Related InterviewSolutions