

InterviewSolution
Saved Bookmarks
1. |
For two unimobular complex numbers `z_(1)` and `z_(2)`, find `[(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)` |
Answer» Correct Answer - `[(1//2,0),(0,1//2)]` `[(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]` `=([(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))][(bar(z)_(1), -z_(2)),(bar(z)_(2),z_(1))])^(-1)` `=[(z_(1)bar(z)_(1)+z_(2)bar(z)_(2),0),(0,z_(2)bar(z)_(2)+z_(1)bar(z)_(1))]^(-1)` `=[(|z_(1)|^(2)+|z_(2)|^(2),0),(0,|z_(1)|^(2)+|z_(2)|^(2))]^(-1)` `=[(2,0),(0,2)]^(-1)=[(1//2,0),(0,1//2)]` |
|