1.

Form a differential equation representing the given family of curves by eliminating arbitrary constant a and b.y = e2x(a + bx)

Answer»

y = e2x (a + bx) …(1) 

differentiating w.r.t x, we get 

⇒ y1= e2x (0 + b) + (a + bx) e2x

⇒ y1 = e2xxb + (a + bx) e2x 2 ….(2) 

putting (1) in (2), 

y1 = be2x + 2y 

⇒ y1 – 2y = b e2x ….(3) 

again differentiating w.r.t x, we get 

y2 – 2y1 = b.e2x.2 ….(4) 

putting (3) in (4) we get 

y2 – 2y1 = 2y1 – 4y 

⇒ y2 – 4y1 + 4y = 0 is the required differential equation.



Discussion

No Comment Found