InterviewSolution
Saved Bookmarks
| 1. |
Form a differential equation representing the given family of curves by eliminating arbitrary constant a and b.y = e^x(acosx + bsinx) |
|
Answer» y = ex(a cos x + b sin x) ….(1) differentiate w.r.t x y1 = ex(a cosx + b sinx) + ex(-a sin x + b cos x) ….(2) putting (1) in (2); we get ⇒ y1 = y + ex(b cos x – a sin x) ⇒ y1 – y = ex(b cos x – a sinx) ….(3) again differentiating w.r.t x, we get ⇒ y2 – y1 = ex (b cos x – a sin x) + ex (-b sin x – a cos x) ….(4) putting (3) and (1) in (4), we get ⇒ y2 – y1= (y1 – y) +(-y) ⇒ y2 – 2y1+ 2y = 0 is the required differential equation. |
|