Saved Bookmarks
| 1. |
Form the givenT-Sdiagram of a reversiblecarnot engine, find(i) work deliveredbyenginein one cycle (ii)heat taken from thesource in eachcycle . (iii) DeltaS_(sink) in eachcycle . |
|
Answer» Solution :(i) `W_(AB) = - nRT ln.(V_(2))/(V_(1))` `DeltaS =(q_(REV))/(T) = - (W_(AB))/(T)` `rArr - W_(AB) = TDeltaS = 600 xx100` `""- W_(BC) = -.^(n)C_(v)(T_(1) - T_(2))` `""- W_(CD) = TDeltaS =300 xx(-100)` `""- W_(DA)= - .^(n)C_(v) (T_(2) - T_(1))` net work deliveredduringone cycle `= - W_(AB) - W_(BC) - W_(CD) - W_(DA) = 300 xx 100 = 30 kJ` Note:Network DONE = area of therectangle (ii) `(W_("net"))/(q) = eta""and "" eta= (600-300)/(600) =(1)/(2)` `rArr q=` "heta takenfrom thethe source"`(-W_("net"))/(1//2) = (30kJ)/( 1//2) = + 60 kJ` (III) `DeltaS_("sink") = - (Q_("sink"))/(T) ""also""(q_("source") + q_("sink"))= 30` `""q_("source") = 600 "" rArr ""q_("sink") = - 30 kJ` `rArr ""DeltaS_("sink") = (-q_("sin K"))/(T) = (_(-30000J))/(100) = 100 J//K` |
|