InterviewSolution
Saved Bookmarks
| 1. |
\(\frac{sec A(sec A + tan A )(1 - sin A)}{(cosec^2 A - 1) sin^2 A}\) is equal to:1. cos2 A2. sec2 A3. cot A4. cos A |
|
Answer» Correct Answer - Option 2 : sec2 A Given : \(\frac{sec A(sec A + tan A )(1 - sin A)}{(cosec^2 A - 1) sin^2 A}\) Concept used : sec a = 1/(cos a) tan a = (sin a)/(cos a) Solution : \(\frac{sec A(sec A + tan A )(1 - sin A)}{(cosec^2 A - 1) sin^2 A}\) \( = \left[ {\frac{1}{{cosA}}\left( {\frac{1}{{cosA}} + \frac{{sinA}}{{cosA}}} \right)\left( {1 - sinA} \right)} \right]/[(1/{\sin ^2}A) - 1]\;{\rm{sin}}{\;^2}A\;\) \( = [1/cosA(1 + sinA)(1 - sinA)]/[((1 - si{n^2}A)/si{n^2}A){\rm{ \times }}si{n^2}A]\) \( = se{c^2}A(1 - si{n^2}A)/((1 - si{n^2}A))\) = sec2 A |
|