InterviewSolution
Saved Bookmarks
| 1. |
From the differential equation of the family curves having equation `y=(sin^(-1)x)^(2)+Acos^(-1)x+B`. |
|
Answer» `y=(sin^(-1)x)^(2)+Acos^(-1)x+B` `=(sin^(-1)x)^(2)-Asin^(-1)sin^(-1)x+(piA)/2+B` Differentiating w.r.t.x, we get `(dy)/(dx) = (2sin^(-1)x)/sqrt(1-x^(2))-A/sqrt(1-x^(2))` `rArr (1-x^(2))((dy)/(dx))^(2)=4(sin^(-1)x)^(2)-4Asin^(-1)x+A^(2)` `=4y-2piA-4B+A^(2)` Differentiating again, w.r.t, x we get `2(1-x^(2))(dy)/(dx)(d^(2)y)/(dx^(2))-2x((dy)/(dx))^(2)=4(dy)/(dx)` `rArr (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2`, which is required differential equation. |
|