1.

From the given data calculate the number of revolutions of an electron in the second Bohr orbit in one second

Answer»

Solution :If `r_(2)` is the radius of the second Bohr orbit, the distance travelled by an electron in one revolution will be `2pi r_(2)` (i.e., the circumference). We have calculate that an electron travels a distance of `1.09 xx 10^(8)cm` in one second in the second Bohr orbit. Hence, revolution per second `=(v_(2))/(2pi r_(2))= (1.09 xx 10^(8))/(2pi r_(2))`
Now `r_(2)= 2^(2). r_(1)`
`=2^(2) xx 53 xx 10^(-8)`
`=2.12 xx 10^(-8)`
(n=2, `r_(1)= 0.53 xx 10^(-8)`)
`therefore` revolutions per second `= (1.09 xx 10^(8))/(2 xx (3.14) xx 2.12 xx 10^(-8))`
`=8.18 xx 10^(14)`


Discussion

No Comment Found