InterviewSolution
Saved Bookmarks
| 1. |
General solution of the differential equation ` (dy)/(dx)=(x+y+1)/(x+y-1)` is given byA. `x+y=log|x+y|+c`B. `x-y=log|x+y|+c`C. `y=x+log|x+y|+c`D. `y=x log|x+y|+c` |
|
Answer» Correct Answer - C `(dy)/(dx)=(x+y+1)/(x+y-1)` Put ` x+y=t ` `implies 1+(dy)/(dx)=(dt)/(dx) ` `implies (dy)/(dx)=(dt)/(dx)-1` `:. " "(dt)/(dt)=(t+1+t-1)/(t-1)` `=(dt)/(dx)=(2t)/(t-1)` `implies((t-1)/(2t))dt=dx ` `implies ((1)/(2)-(1)/(2t))dt=dx ` On integrating , we get `(1)/(2)t-(1)/(2) log t=x +c_(1)` `implies t-logt=2x+ 2c_(1)` `implies x+y- log (x+y)=2x+2c_(1)` `implies y=x+ log( x +y)+c ` |
|