InterviewSolution
Saved Bookmarks
| 1. |
Given a parallelogram `OACB`. The lengths of the vectors `vec (OA)`, `vec (OB)` & `vec (AB)` are `a`, `b` & `c` respectively. The scalar product of the vectors `vec (OC)` & `vec (OB)` is(A) `(a^2-3b^2+c^2)/2`(B) `(3a^2+b^2-c^2)/2`(C) `(3a^2-b^2+c^2)/2`(D) `(a^2+3b^2-c^2)/2` |
|
Answer» With the given details, we can create a diagram. Please refer to video for the diagram. Here,` vec(OC).vec(OB) =|vec(OB)||vec(OC)|costheta` `=> vec(OC).vec(OB) =b|vec(OC)|costheta ->(1)` In `Delta AOB`, using cosine law, `c^2 = a^2+b^2-2abcos(theta+alpha)->(2)` In `Delta AOC`, using cosine law, `OC^2 = a^2+b^2-2abcos(pi-(theta+alpha))` `=>OC^2 = a^2+b^2+2abcos(theta+alpha)->(3)` Adding (2) and (3), `c^2+OC^2 = 2(a^2+b^2)` `=> OC^2 = 2(a^2+b^2)-c^2` Now, in `Delta BOC`, using cosine law, `a^2 = b^2+OC^2-2b|vecOC|costheta` `=>a^2 = b^2+2a^2+2b^2-c^2-2b|vecOC|costheta` `=>2b|vecOC|costheta = 3b^2+a^2-c^2` `=>b|vecOC|costheta = (3b^2+a^2-c^2)/2` From (1), `vec(OC).vec(OB) = (a^2+3b^2-c^2)/2` |
|