InterviewSolution
Saved Bookmarks
| 1. |
Let `a= 2hat(i)+ hat(j) -2hat(k) , b=hat(i) +hat(j) ` and c be a vectors such that `|c-a| =3, |(axxb)xx c|=3` and the angle between c and `axx b" is "30^(@)` . Then a. c is equal toA. `(25)/(8)`B. `2`C. `5`D. `(1)/(8)` |
|
Answer» Correct Answer - B we have `a= 2hat(i)+ hat(j) -2hat(k)` `rArr |a|= sqrt(4+1+4)=3` `" and " b=hat (i) + hat(j)` `rArr |b| = sqrt(1 +1)= sqrt(2)` Now `|c-a|=3 rArr |c-a|^(2) =9` ` rArr (c-a) .(c-a) =9` `rArr |c|^(2) +|a|^(2)- 2 c.a =9` Again , `|(a xx b) xx c|=3` `rArr | a xx b| | c| " sin " 30^(@) = 3` `|c| = (6)/(|axxB|)` But `axx b = |{:(hat(i),,hat(j),,hat(k)),(2,,1,,-2),(1,,1,,0):}| = 2hat(i) - 2hat(j) + hat(k)` ltbgt `:. |c| = (6)/(sqrt(4+4+1)) = 2` From Eqs . (i) and (ii) we get `(2)^(2) +(3)^(2) - 2c. a=9` `rArr 4+9 -3c. a =9` `rArr c.a =2` |
|