1.

Given that `C(n, r) : C(n,r + 1) = 1 : 2 and C(n,r + 1) : C(n,r + 2) = 2 : 3`. What is r equal to ?A. 2B. 3C. 4D. 5

Answer» Correct Answer - C
`(.^(n)C_(r))/(.^(n)C_(r+1))=(1)/(2)`
`(|ul(n)|ul(r+1)|ul(n-r-1))/(|ul(r)|ul(n-r).|ul(n))=(1)/(2)`
`(r+1)/(n-r)=(1)/(2)rArr 3r -n+2=0" "...(i)`
`(.^(n)C_(r+1))/(.^(n)C_(r+2))=(2)/(3)`
`(|ul(n)|ul(r+2)|ul(n-r-2))/(|ul(r+1)|ul(n-r-1)|ul(n))=(2)/(3)`
`(r+2)/(n-r-1)=(2)/(3)rArr 5r - 2n + 8 = 0`
Solving equation (i) and (ii), we get
`n = 14, r = 4`


Discussion

No Comment Found