InterviewSolution
Saved Bookmarks
| 1. |
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2. |
|
Answer» Given: sin θ +2 cos θ = 1 Squaring on both sides, (sin θ +2 cos θ)2 = 1 ⇒ sin2 θ + 4 cos2 θ + 4sin θcos θ = 1 Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ ⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θcos θ = 1 ⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θcos θ = 1 ⇒ – 4 sin2 θ – cos2 θ + 4sin θcos θ = – 4 ⇒ 4 sin2 θ + cos2 θ – 4sin θcos θ = 4 We know that, a2+ b2 – 2ab = ( a – b)2 So, we get, (2sin θ – cos θ)2 = 4 ⇒ 2sin θ – cos θ = 2 Hence proved. |
|