

InterviewSolution
Saved Bookmarks
1. |
Given `vec(A)=4hat(i)+6hat(j)` and `vec(B)=2hat(i)+3hat(j)`. Which of the followingA. `vec(A)xxvec(B)=vec(0)`B. `vec(A).vec(B)=24`C. `(|vec(A)|)/(|vec(B)|)=1/2`D. `vec(A)` and `vec(B)` are antiparallel |
Answer» Correct Answer - A `vec(A)xxvec(B)=(4hat(i)+6hat(j))xx(2hat(i)+3hat(j))=12(hat(i)xxhat(j))+12(hat(j)xxhat(i))` `=12(hat(i)xxhat(j))-12(hat(i)xxhat(j))=0` Again, `vec(A).vec(B)=(4hat(i)+6hat(j)).(2hat(i)+3hat(j))=8+18=26` Again`(|vec(A)|)/(|vec(B)|)=(sqrt(16+36))/(sqrt(4+9))!=1/2` Also, `vec(B)=1/2vec(A) rArr vec(A)` and `vec(B)` are parallel and not antiparallel. |
|