1.

Gold occurs as face centred cube and has a density of 19.30kg dm^(-3). Calculate atomic radius of gold. (Molar mass of Au=197)

Answer»


Solution :Densityof AU=`19.3kg DM^(-3)`
Molar MASS=`197g"mol"^(-1)`
Avogadro constant `=N_(A)=6.022xx10^(23)"mol"^(-1)`
Atomic radius of Au=?
If fcc unit cell, there are 8 ATOMS of Au at 8 corners and 6 atoms at 6 face centres.
Number of Au atoms in the unit cell `=(1)/(8)xx8+(1)/(2)xx6`
4atoms
Mass of 1Au atom `(197)/(6.022xx10^(23))=3.271xx10^(-22)g`
`therefore "Mass of 4 Au atoms"=4xx3.271xx10^(-22)g`
`therefore "Mass of unit cell"=1.308xx10^(-22)g`
`""=1.308xx10^(-24)kg`
Densidy of the unit cell `=("Mass of unit cell")/("Volume of unit cell")`
`therefore d=(1.308xx10^(-21))/(a^(3))`
`therefore (a^(3)=1.308xx10^(-21))/(d)=(1.308xx10^(-24))/19.3`
`=6.77xx10^(-26)dm^(3)`
`=6.77xx10^(-23)cm^(3)`
`therefore a=(6.77xx10^(-23))^(1//3)=(67.77xx10^(-24))^(1//3)`
`""=4.077xx10^(-8)cm`
If r is the radius of Au atom, then for fcc unit cell, `r=(a)/(2sqrt2)`
`=(4.077xx10^(-8))/(2sqrt2)=1.442xx10^(-8)cm=144.2cm`


Discussion

No Comment Found