 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | `H_(2)` gas is mixed with air at `25^(@)C` under a pressure of 1 atmosphere and exploded in a closed vessel. The heat of the reaction, `H_(2(g))+(1)/(2)O_(2(g))rarrH_(2)O_((v))` at constant volume, `DeltaU_("298 K")=-"240.60 kJ mol"^(-1)` and `C_(V)` values for `GH_(2)O` vapour and `N_(2)` in the temperature range `"298 K and 3200 K are 39.06 JK"^(-1)"mol"^(-1) and "26.40 JK"^(-1)"mol"^(-1)` respectively. The explosion temperature under adiabatic conditions is (Given : `n_(N_(2))=2)`A. 2900 KB. `2900^(@)C`C. 2917 KD. `3000^(@)C` | 
| Answer» Correct Answer - C If the process is carried out adiabatically and isochorically, `DeltaU=DeltaU_("heating")+DeltaU_("298 K")=0` or `DeltaY_("heating")=-DeltaU_(298K)` `=int_(298K)^(T_(f))n SigmaC_(v)dT=+240.60" kJ mol"^(-1)` `SigmanC_(v)=n.C_(v(H_(2)O_((v)))+nC_(v(V_(2(g))))` `=(39.06+2xx26.40)=91.86JK^(-1)mol^(-1)` by using the value of `SigmanC_(v)` in the above equation `(91.86)(T_(f)-298)=240600"J mol"^(-1)` `T_(f)-298=(240600)/(91.86)=2619K` `T_(f)=2619+298=2917K` | |