InterviewSolution
Saved Bookmarks
| 1. |
How many tangents to the circle `x^2 + y^2 = 3` are normal tothe ellipse `x^2/9+y^2/4=1?`A. 3B. 2C. 1D. 0 |
|
Answer» Correct Answer - D Equation of normal to ellipse `(x^(2))/(9) + (y^(2))/(4) =1` at `P(3 cos theta, 2 sin theta)` is `3x sec theta -2y cos theta =5` If it is tangent to circle `x^(2) + y^(2) =3`, then `rArr (5)/(sqrt(9sec^(2) theta+4 cosec^(2)theta)) =sqrt(3)` `9 sec^(2) theta + 4 cosec^(2) theta = 9 = 4+ 9 tan^(2) theta + 4 cot^(2) theta = 25 +(3 tan theta -2 cot theta)^(2)` `:. (9 sec^(2) theta + 4 cosec^(2) theta)_(min) =25` `:.` no such `theta` exists. Hence no tangents to circle which is normal to ellipse. |
|