

InterviewSolution
1. |
How many terms are to be added to make the sum 52 in the series (-8) + (-6) + (-4) + ……………… ? A) 31 B) 13 C) 3 D) 12 |
Answer» Correct option is (B) 13 Given sequence is -8, -6, -4, ....... \(\because\) \(a_2-a_1=-6-(-8)=2\) \(a_3-a_2=-4-(-6)=2\) \(\because\) \(a_3-a_2\) = \(a_2-a_1\) \(\therefore\) Sequence -8, -6, -4, ....... is an A.P. whose common difference is d = 2 & first term is \(a=a_1=-8.\) Let n terms are to be added to make the sum 52 in the given series. i.e., \(S_n=52\) \(\Rightarrow\frac n2[2a+(n-1)d]=52\) \(\Rightarrow\frac n2[2\times-8+(n-1)2]=52\) \((\because a=-8\;\&\;d=2)\) \(\Rightarrow n[-16+2n-2]=52\times2=104\) \(\Rightarrow2n^2-18n-104=0\) \(\Rightarrow n^2-9n-52=0\) \(\Rightarrow n^2-13n+4n-52=0\) \(\Rightarrow n(n-13)+4(n-13)=0\) \(\Rightarrow(n-13)(n+4)=0\) \(\Rightarrow n-13=0\;or\;n+4=0\) \(\Rightarrow n=13\;or\;n=-4\) \(\because\) Number of terms never be negative. \(\therefore n\neq-4\) Therefore n = 13 Hence, 13 terms are to be added to make the sum 52 in the given series. Correct option is B) 13 |
|