1.

How many terms are to be added to make the sum 52 in the series (-8) + (-6) + (-4) + ……………… ? A) 31 B) 13 C) 3 D) 12

Answer»

Correct option is (B) 13

Given sequence is -8, -6, -4, .......

\(\because\) \(a_2-a_1=-6-(-8)=2\)

\(a_3-a_2=-4-(-6)=2\)

\(\because\) \(a_3-a_2\) = \(a_2-a_1\)

\(\therefore\) Sequence -8, -6, -4, ....... is an A.P.

whose common difference is d = 2 & first term is \(a=a_1=-8.\)

Let n terms are to be added to make the sum 52 in the given series.

i.e., \(S_n=52\)

\(\Rightarrow\frac n2[2a+(n-1)d]=52\)

\(\Rightarrow\frac n2[2\times-8+(n-1)2]=52\)      \((\because a=-8\;\&\;d=2)\)

\(\Rightarrow n[-16+2n-2]=52\times2=104\)

\(\Rightarrow2n^2-18n-104=0\)

\(\Rightarrow n^2-9n-52=0\)

\(\Rightarrow n^2-13n+4n-52=0\)

\(\Rightarrow n(n-13)+4(n-13)=0\)

\(\Rightarrow(n-13)(n+4)=0\)

\(\Rightarrow n-13=0\;or\;n+4=0\)

\(\Rightarrow n=13\;or\;n=-4\)

\(\because\) Number of terms never be negative.

\(\therefore n\neq-4\)

Therefore n = 13

Hence, 13 terms are to be added to make the sum 52 in the given series.

Correct option is B) 13



Discussion

No Comment Found