1.

How many total possible isomers are present for [Pt(CN)_(2)(NO_(2))_(2)]^(2-) ?

Answer»

2
4
10
19

Solution :`[Pt(CN)_(2)(NO_(2))_(2)]^(2-)`
`leftarrow EQUIV N' rightarrow`
`O=underset(downarrow)N-O^(Ɵ)rightarrow`
(C, C)[(N, N) or (N, O) or (O, N) or (O, O)]= 4
`(C, N') IMPLIES 4`
`(N', N') implies 4`
(C, N) `implies` [(C, N), (N', N), (C, O), (N', O)] = 4
(C, O) `implies` [(N', N), (N', O)] = 2
(N', N) `implies` [N', O] = 1
`(N', O) `implies` -
Total = 19


Discussion

No Comment Found