

InterviewSolution
Saved Bookmarks
1. |
`(i+j+3k)x+(3i-3j+k)y+(-4i+5j)z=lambda(x i+yj+zk)` then lambda equal to |
Answer» `(hati+hatj+3hatk)x+(3hati-3hatj+hatk)y +(-4hati+5hatj)z = lambda(xhati+yhatj+zhatk)` Comparing coefficient of `hati, hatj and hatk` `x+3y-4z = lambda x =>(1-lambda)x+3y-4z = 0->(1)` `x-3y+5z = lambda y => x+(-3-lambda)y+5z = 0->(2)` `3x+y = lambda z => 3x+y-lambdaz = 0->(3)` Now, solving (1),(2),(3) using determinant, `|[1-lambda,3,-4],[1,-3-lambda,5],[3,1,-lambda]| = 0` `=>[(1-lambda)(3lambda+lambda^2-5)-3(-lambda-15)-4(1+9+3lambda)] = 0` `=>lambda^2+3lambda-5-lambda^3-3lambda^2+5lambda+3lambda+45-40-12lambda = 0` `=>-lambda^3-2lambda^2-lambda = 0` `=>lambda(lambda^2+2lambda+1) = 0` `=>lambda(lambda+1)^2 = 0` `=>:. lambda = 0 and lambda = -1` |
|