InterviewSolution
Saved Bookmarks
| 1. |
If `0 le x le 2pi`, then the number of real values of x, which satisfy the equation `cos x + cos 2x + cos 3x + cos 4x=0`, isA. 5B. 7C. 9D. 3 |
|
Answer» Correct Answer - B `cos x + cos 2x + cos 3x + cos 4x=0, 0 le x lt 2pi` `rArr (cos x + cos 4x) + (cos 2x + cos 3x)=0` `rArr 2 "cos"(5x)/2 "cos" (3x)/2+2 cos (5 x)/2 "cos" x/2 =0` `rArr 2 "cos" (5x)/2 [2 cos x cos x/2]=0` `rArr "cos" (5x)/2 =0` or `cos x=0` or `"cos" x/2 =0` `rArr x=((2n+1)pi)/5` or `x=(2n+1) pi/2` or `x=(2n+1) pi, n in Z` `rArr x={pi/5, (3pi)/5, pi, (7pi)/5, (9pi)/5, pi/2, (3pi)/2}` `:.` Number of solution is `7` |
|