

InterviewSolution
Saved Bookmarks
1. |
If `[(0,2b,c),(a,b,-c),(a,-b,c)]` is orthogonal matrix, then the value of `|abc|` is equal to (where `|*|` represents modulus function)A. `1/2`B. `1/3`C. `1/6`D. 1 |
Answer» Correct Answer - C If A is an orthogonal matrix, then `A A^T=I=A^TA` `rArr{:[(0,2b,c),(a,b,-c),(a,-b,c)][(0,a,a),(2b,b,-b),(c,-c,c)]=[(1,0,0),(0,1,0),(0,0,1)]:}` `rArr{:[(4b^2+c^2,2b^2-c^2,-2b^2+c^2),(2b^2-c^2,a^2+b^2+c^2,a^2-b^2-c^2),(-2b^2+c^2,a^2-b^2-c^2,a^2+b^2+c^2)]=[(1,0,0),(0,1,0),(0,0,1)]:}` `rArr 4b^2+c^2=1,2b^2-c^2=0 and a^2-b^2-c^2=0` `rArra^2=1/2,b^2=1/6and c^2=1/3rArrabs(abc)=1/6` |
|