InterviewSolution
Saved Bookmarks
| 1. |
if `1+cos^(2)theta=3sinthetacostheta` then the integral value of `cottheta` is `(0 lt theta lt (pi)/(2))`A. 2B. 1C. 3D. 0 |
|
Answer» Correct Answer - b Given, `1+cos^(2)theta=3sintheta.cos theta` `[Oltthetaltpi//2]` ` 1+cos^(2)theta=3sin theta.cos theta` Dividing by `sin^(2)theta.cos theta` `rArrco s ec^(2)theta+cot^(2)theta=3cottheta` `rArr1+cot^(2)theta+cot^(2)theta=3cottheta` `because [1+cot^(2)theta=co s ec^(2)theta]` `rArr1+2cot^(2)theta=3cottheta` `rArr2cot^(2)theta=3cottheta-1` Let `theta=45^(@)` `because Cot 45^(@)=1` `2cot^(2)45^(@)-3cot45^(@)+1=0` 2-3+1=0 0=0 Therefore `cot theta=cot45^(@)=1` |
|