| 1. |
If [2 ,1 ,3]\(\begin{bmatrix}-1& 0 & -1 \\[0.3em]-1 &1 &0 \\[0.3em]0 &1 &1\end{bmatrix}\)\(\begin{bmatrix}1 \\[0.3em]0 \\[0.3em]-1\end{bmatrix}\)= A, then write the order of matrix A. |
|
Answer» We are given that, [2 ,1 ,3]\(\begin{bmatrix}-1& 0 & -1 \\[0.3em]-1 &1 &0 \\[0.3em]0 &1 &1\end{bmatrix}\)\(\begin{bmatrix}1 \\[0.3em]0 \\[0.3em]-1\end{bmatrix}\)= A We need to find the order of the matrix A. Let the matrices be, X = [2 ,1 ,3] Y = \(\begin{bmatrix}-1& 0 & -1 \\[0.3em]-1 &1 &0 \\[0.3em]0 &1 &1\end{bmatrix}\) Z = \(\begin{bmatrix}1 \\[0.3em]0 \\[0.3em]-1\end{bmatrix}\) Let us find the order of X. Number of rows of matrix X = 1 Number of columns of matrix X = 3 So, Order of matrix X = 1 × 3 …(i) Now, let us find the order of Y. Number of rows of matrix Y = 3 Number of columns of matrix Y = 3 So, Order of matrix Y = 3 × 3 …(ii) From (i) and (ii), Order of resulting XY = 1 × 3 [∵ Number of columns of X = Number of rows of Y] …(iii) Let us find the order of Z. Number of rows of matrix Z = 3 Number of columns of matrix Z = 1 So, Order of matrix Z = 3 × 1 …(iv) Order of resulting XYZ = 1 × 1 [∵ Number of columns of XY = Number of rows of Z] Thus, The order of matrix A = 1 × 1 |
|