1.

If \(2\begin{bmatrix}3& 4 \\[0.3em]5 & x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix},\)find x and y.

Answer»

 \(2\begin{bmatrix}3& 4 \\[0.3em]5 & x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix}\) 

 \(=\begin{bmatrix}6& 8 \\[0.3em]10 & 2x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix}\) 

We know that, corresponding entries of equal matrices are equal.

= Y + 8=0 

2X + 1=5

= Y = -8 

2X = 5 - 1 

= Y= - 8 

X = \(\frac{4}{2}\)

= Y= - 8 

X = 2

Hence, 

X = 2 

Y = -8



Discussion

No Comment Found

Related InterviewSolutions