

InterviewSolution
Saved Bookmarks
1. |
If \(2\begin{bmatrix}3& 4 \\[0.3em]5 & x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix},\)find x and y. |
Answer» \(2\begin{bmatrix}3& 4 \\[0.3em]5 & x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix}\) \(=\begin{bmatrix}6& 8 \\[0.3em]10 & 2x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix}\) We know that, corresponding entries of equal matrices are equal. = Y + 8=0 2X + 1=5 = Y = -8 2X = 5 - 1 = Y= - 8 X = \(\frac{4}{2}\) = Y= - 8 X = 2 Hence, X = 2 Y = -8 |
|